The University of Jordan School of Engineering Department of Civil Engineering

Course Syllabus: Spring 2018/2019

1. Course Name:	Prestressed Concrete	Course Number:	0941737	Credits:	3	
2. Class schedule:	Time and place	Section #1: Monday: 3:30 pm – 6:30 pm (at Civil 103)				
	Office Hours:	Monday and Wednesday: 2:00 pm – 3:30 pm, or by				
		appointment				
3. Instructor:	Name:	Dr. Maha Alqam				
	E-mail address:	m.alqam@ju.edu.jo				
	Office Phone:	+9625355000 Ext.: 22778				

- **4.** Text Book: Naaman, A. E., "Prestressed Concrete Analysis and Design: Fundamentals", 2nd edition, Techno Press 3000, 2004.
- 5. Note: All lecture notes are taken in part or in whole from *Ref. 1* Naaman, A. E., "Prestressed Concrete Analysis and Design (Fundamentals)", 2nd edition, Techno Press 3000, 2004. Specific figures, charts, tables, text, examples, etc...
- 6. Design Code: Building Code Requirements for Structural Concrete (ACI 318M-11) and Commentary (ACI 318RM-11), ACI 2011.
- 7. Contents:

POWERPOINT PRESENTATION - Practical Applications of Cast-in-Place Post-Tensioned Concrete Construction (On-Site); Lifting of PT Beam; Stressing using PT Jacks.

CHAPTER 1 - PRINCIPLE METHODS OF PRESTRESSING

CHAPTER 2 - PRESTRESSING MATERIALS: STEEL AND CONCRETE

CHAPTER 3 - DESIGN PHILOSOPHY

CHAPTER 4 - FLEXURE: WORKING STRESS ANALYSIS AND DESIGN

- CHAPTER 5 FLEXURE: ULTIMATE STRENGTH ANALYSIS AND DESIGN
- CHAPTER 6 DESIGN FOR SHEAR

CHAPTER 7 - CAMBER AND DEFLECTION COMPUTATIONS

- CHAPTER 8 ANALYSIS AND DESIGN OF COMPOSITE BEAMS
- CHAPTER 9 END ANCHORAGE ZONE.
- 7. Minimum student materials: Class handouts and engineering calculator.

8. Instructional methods:

- a. PowerPoint Presentations.
- b. Lecture/Problem solving sessions.
- c. Case studies.
- d. Quizzes and Homework.
- e. Reading assignments.
- 9. Homework Assignments: Homework will be assigned for each chapter.
- 10. Assessment Scheme:

Evaluation	Weight of 100%		
Midterm Exam	30%		
Coursework	30%		
Final Exam	40%		
Total	100%		

Attendance: Students are expected to attend <u>EVERY CLASS SESSION</u> and they are responsible for all material, announcements, schedule changes, etc., discussed in class. The university policy regarding the attendance will be strictly adhered to.